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Abstract
We propose a cluster expansion (CE) technique that can express any function of atomic
arrangement on any given lattice with the same number of lattice points in a single formalism.
In the proposed CE, two types of spin variable, σ and τ , on the base lattice and virtual lattice,
respectively, are introduced. The former spin variable specifies the occupation of the constituent
elements for each lattice point. The latter specifies the positions of each lattice point. Basis
functions constructed from the two types of spin variable satisfy completeness and
orthonormality for any atomic arrangement on given lattices. As examples, the proposed CE is
applied to one- and three-dimensional lattices in a binary system, which clarifies the concept of
base and virtual lattices, how the functions of atomic arrangements are expressed in terms of the
two types of spin variable, and the efficiency and convergence of the proposed CE with a finite
number of clusters and input structures.

1. Introduction

Alloys exhibit a variation in their physical properties
such as hardness, electric resistance, chemical reactivity
and catalytic properties with changes in their constituent
atomic arrangement and composition. The theoretical
prediction of alloy configurational thermodynamics is a
fundamental and important prerequisite to the design of
desirable alloy materials in terms of narrowing down
the controlling parameters. In particular, the recent
increase in computational power has enabled us to predict
the energetic of alloys through first-principles calculations
based on density functional theory (DFT). However, the
modeling of alloy thermodynamics requires the energetic
for a tremendous number of atomic arrangements (in
principle, RN arrangements for R components on N
lattice points), which still makes it difficult to directly
apply DFT. Therefore, alternative approaches for predicting
alloy thermodynamics has been proposed to reduce the
computational load of DFT. The most promising and well-
established approach is the cluster expansion [1, 2] (CE)
technique, where the alloy energetics are described by the
Ising-like Hamiltonian. The CE technique combined with
DFT total energy calculation has been widely applied to
predict a variety of aspects of alloy thermodynamics such
as binary [3–7] and multicomponent [8–11] bulk phase
diagrams, the prediction of ground-state structures [12],

surface segregation and ordering [13–18], and the effects of
lattice vibration [19, 20] and external pressure [21] on alloy
phase stability. Furthermore, the CE formalism has been
modified in various ways so that it can be applied to systems
that practically require specific treatment in terms of the
configuration spaces. Mixed-space CE [22–24], which treats
clusters in both real and reciprocal space, has been applied
to long-period superlattices, coupled CE [26], which treats
distinct sublattices, has been applied to ionic systems and
adsorption-induced surface segregation, and tensorial CE [25]
can predict tensor-valued properties including dielectric
constants and elasticity. Another modification of the CE
technique is the procedure used to select optimized clusters
and DFT input structures to increase the accuracy of predicted
energies [12].

In spite of such successful applications of CE, there still
remains an essential limitation preventing the modeling of
more general alloy configurational thermodynamics. Although
the CE formalism certainly allows us to estimate the energy of
any atomic arrangement on a lattice with the desired accuracy,
it is limited to the given lattice; different lattices require
different expressions for the energy. This makes it difficult to
apply CE to energetics for specific systems whose lattice points
vary with changes in their circumstances such as temperature,
atomic arrangement and composition. One can easily find such
systems, which include graphite-like layered boron–carbon
nitride, the shear structure of titanium oxide, polymorphous
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silicon carbide and the close-packed alloy surface between fcc
and hcp structures.

In the present paper, we propose a CE formalism,
variable lattice CE (VLCE), which can overcome the above
limitation of CE. In the following sections, we first derive
the conventional CE formalism briefly and then explain the
concept of the proposed VLCE and derive its formalism. We
then consider a simple example of the application of VLCE
to one-dimensional lattices with line and zigzag shapes, and
clarify how effective interactions in VLCE can be interpreted
intuitively. Finally, VLCE is applied to three-dimensional
lattices with fcc and hcp structures to demonstrate how base
and virtual lattices are introduced and how functions of atomic
arrangements are expressed.

2. Expansion formalism for configuration functions

2.1. Conventional cluster expansion formalism

First, the formalism in conventional CE is explained to
illustrate the basic concept of CE. Here we consider a single-
crystalline system with N well-defined lattice points for the R
component. The occupation of lattice point i (i = 1 · · · N) by
atomic element r (r = 1 · · · R) is described by introducing
the so-called spin variable σi , which takes different values
for different r . Any atomic arrangement on the lattice points
can be uniquely specified by an N-dimensional vector �σ =
{σ1, σ2, . . . , σN }. In CE, any function f that depends on
the atomic arrangement is typically expanded in terms of the
orthonormal basis functions of the atomic arrangement �σ ,
which are called cluster functions �:

f (�σ) =
∑

w

〈 f (�σ)|�w(�σ)〉�w(�σ), (1)

where 〈 | 〉 denotes the inner product defined in �σ space [1].
The basis functions {�w} are constructed from the orthonormal
basis {ρ} at individual lattice points. The set {ρ}
is typically obtained by applying the following Gram–
Schmidt technique to the linearly independent polynomial set
{1, σi , σ

2
i , . . . , σ R−1

i }:

ρm(σi ) = bm(σi )

〈bm(σi )|bm(σi)〉1/2

bm(σi ) = σ m
i −

m−1∑

j=0

〈ρ j (σi )|σ m
i 〉ρ j (σi ) (m �= 0)

bm(σi ) = 1 (m = 0),

(2)

where m takes integer values of 0 · · · R − 1. In this procedure,
ρ0 is always unity. Orthonormal basis functions for all N
lattice points, � , can thus be obtained by

v : {�(�σ)} = v : {ρ(σ1)} ⊗ · · · ⊗ v : {ρ(σN )}, (3)

where v : {χ} denotes the vector space consisting of the set
of functions χ . Note that, from equations (2) and (3), it is
evident that two sets of indices are required to specify the
cluster function �: one is a set of lattice points, {i, j, . . . k},

and the other is a set of indexed basis functions represented by
a subscript ρ in equations (2). Therefore, any function f with
atomic arrangement �σ in equation (1) should be rewritten as
follows:

f (�σ) = 〈�0| f (�σ)〉�0 +
∑

α

∑

(M)

〈�(M)
α (�σ)| f (�σ)〉�(M)

α (�σ)

�(M)
α (�σ) = ρd1(σi )ρd2(σ j) · · · ρdn (σk),

(4)
where α specifies the set of lattice points whose basis function
is not unity (i.e. �=ρ0), which corresponds to the n-body
cluster consisting of lattice points {i, j, . . . , k}, and (M)

specifies the set of indexed basis functions in equations (4),
{d1, d2, . . . , dn}. In equations (4), the function f is expanded
exactly when the summations over α and (M) are performed
over all possible clusters on the N lattice points and all possible
combination of the indexes ρ, respectively. In practice, the
expansion is truncated at a finite order owing to the limitation
on the number of DFT input structures. The expansion
coefficient, 〈�(M)

α (�σ )| f (�σ)〉, is called the effective cluster
interaction (ECI) for cluster α with index set (M). �0 = unity
is independent of �σ and the corresponding cluster is called an
empty cluster that has no explicit cluster figure. It is clear
that conventional CE cannot treat the function f on different
lattices in a single formalism since spin variable σi itself does
not contain any information about the position of lattice point
i . Thus, ECIs should be estimated on individual lattices.

2.2. Present treatment of cluster expansion

We first derive a VLCE expression that can treat any atomic
arrangement on any well-defined lattice with N lattice points
and R components. In order to treat a number of different
lattices using a method on CE, we introduce two types of
spin variable and two types of lattice. The first lattice is a
‘base lattice’, which has the same number of lattice points
as the well-defined lattice, where the positions of the lattice
points can be artificially determined. Each lattice point i is
occupied by one of the R constituent components specified
by the spin variable σi , in a similar fashion to conventional
CE. Note that any artificially defined position for a base
lattice point is amenable to VLCE, although the practical
efficiency certainly depends on its definition. The second
lattice is a ‘virtual lattice’, which also has the same number
of lattice points as the well-defined lattice. Since the base,
virtual and well-defined lattices have the same number of
lattice points N , we give the same labels to the N lattice
points of each lattice, 1 · · · N . Each lattice point i on the
virtual lattice has one spin variable τi , which specifies the
relative position of the corresponding well-defined lattice point
i measured from the base lattice point i . Note that, since
τ specifies the position of the well-defined lattice point, a
combination of base lattice and τ s can describe lattices whose
positions of lattice points are essentially different from those
on the base lattice. This definition of τi , i.e., the actual
difference in position from the base lattice or the artificially
normalized position, does not essentially alter the final VLCE
expression obtained. For three-dimensional lattices, it is clear
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Figure 1. Schematic illustration of coupling between base and three virtual lattices for the x , y and z directions in cubic cells, which results in
the atomic arrangement on any lattice consisting of eight lattice points.

that three spin variables, �τi = {τ x
i , τ

y
i , τ z

i }, are required to
specify the position of lattice point i in Cartesian coordinates.
Note that, while σi for the base lattice takes R values, the
number of values that τ

η

i takes, Rη (η = x , y or z),
depends on the number of positions in the lattices being
considered. Figure 1 shows a schematic illustration of the
coupling between the base lattice and the three virtual lattices
that specify the positions of well-defined lattice points in the
x , y and z directions in cubic cells. This results in the
atomic arrangement on any lattice consisting of eight lattice
points. Then any atomic arrangement on a well-defined
lattice is uniquely specified by the 4N-dimensional vector
{�σ, �τ } = {σ1, . . . , σN , τ x

1 , . . . , τ x
N , τ

y
1 , . . . , τ

y
N , τ z

1 , . . . , τ z
N , }.

Orthonormal basis functions for a single lattice point i on a
base or virtual lattice can be constructed from equations (2),
which satisfy

〈ρd(σi )|ρd ′(σi )〉 = ξ N
baseTrN

baseρd(σi )ρd ′(σi )

= R−1
∑

σi

ρd(σi )ρd ′(σi ) = δdd ′

〈ρd(τ
η
p)|ρd ′(τ η

p )〉 = ξ N
η TrN

η ρd(τ
η
p)ρd ′(τ η

p )

= R−1
η

∑

τ
η
p

ρd(τ
η
p)ρd ′(τ η

p ) = δdd ′

(5)

for a single lattice point. Here, ξ N
base and ξ N

η are the normalized
constants for the inner product of base and virtual lattice points,
and TrN

base and TrN
η are the trace operator on the �σi and �τ η

p space,
respectively. Orthonormal basis functions for all lattice points
on the base and virtual lattices, �, can then be obtained from

v : {�(�σ , �τ )} = v : {�base(�σ)} ⊗ v : {virtual( �τ x)}
⊗ v : {virtual( �τ y)} ⊗ v : {virtual( �τ z)}

v : {�base(�σ)} = v : {ρ(σ1)} ⊗ · · · ⊗ v : {ρ(σN )}
v : {virtual( �τ η)} = v : {ρ(τ

η

1 )} ⊗ · · · ⊗ v : {ρ(τ
η

N )},

(6)

where �base and virtual denote the orthonormal basis functions
for the base and virtual lattices, respectively. Therefore, any
function of an atomic arrangement for any lattice can be
generally expressed as

f (�σ, �τ ) = 〈�0| f (�σ, �τ )〉�0

+
∑

α

∑

(M)

〈�(M)
α (�σ)| f (�σ, �τ )〉�(M)

α (�σ)

+
∑

η

∑

β

∑

(Lη)

〈�(Lη)

β ( �τ η)| f (�σ, �τ )〉�(Lη)

β ( �τ η)

+
∑

η

∑

α,β

∑

(M,Lη)

〈�(M,Lη)

α;β (�σ, �τ η)| f (�σ, �τ )〉�(M,Lη)

α;β (�σ, �τ η)

+
∑

η �=η′

∑

β,β ′

∑

(Lη,Lη′ )
〈�(Lη,Lη′ )

β;β ′ ( �τ η, �τ η′
)| f (�σ, �τ )〉

× �
(Lη,Lη′ )
β;β ′ ( �τ η, �τ η′

)

+
∑

η �=η′

∑

α,β,β ′

∑

(M,Lη ,Lη′ )
〈�(M,Lη ,Lη′ )

α;β;β ′ (�σ, �τ η, �τ η′
)| f (�σ, �τ )〉

× �
(M,Lη,Lη′ )
α;β;β ′ (�σ, �τ η, �τ η′

)

+
∑

β,β ′,β ′′

∑

(Lx ,L y,Lz )

〈�(Lx ,L y ,Lz)

β;β ′;β ′′ ( �τ x, �τ y, �τ z)| f (�σ , �τ )〉

× �
(Lx ,L y ,Lz)

β;β ′;β ′′ ( �τ x, �τ y, �τ z)

+
∑

α,β,β ′,β ′′

∑

(M,Lx ,L y ,Lz )

〈�(M,Lx ,L y,Lz )

α;β;β ′;β ′′ (�σ, �τ x , �τ y, �τ z)|f (�σ, �τ )〉

× �
(M,Lx ,L y,Lz )

α;β;β ′;β ′′ (�σ , �τ x, �τ y, �τ z).

(7)
The inner product 〈 | 〉 is defined by

〈g|h〉 = ξ 4N
0 Tr(4N)g · h, (8)

where ξ 4N
0 is the normalized constant of the inner product given

by
ξ 4N

0 = (RRx Ry Rz)
−N (9)

and Tr(4N) denotes the trace operator on the {�σ, �τ } space:

Tr(4N) =
∑

σ1

· · ·
∑

σN

∑

τ x
1

· · ·
∑

τ x
N

∑

τ
y
1

· · ·
∑

τ
y
N

∑

τ z
1

· · ·
∑

τ z
N

.

(10)
The cluster functions � are given by

�(M)
α =

∏

I∈α

d∈M

ρd(σI )

�
(Lη...,Lη′ )
β;...β ′ =

∏

P∈β

d∈Lη

ρd(τ
η

P) · · ·
∏

P′∈β′
d′∈Lη′

ρd ′(τ
η′
P ′)

�
(M,Lη...,Lη′ )
α;β;...β ′ =

∏

I∈α

d∈M

ρd(σI )
∏

P∈β

d′∈Lη

ρd ′ (τ
η

P) · · ·
∏

P′∈β′
d′′∈L

η′

ρd ′′(τ
η′
P ′).

(11)
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The summations over α and β in equation (7) are taken over
all possible clusters on the base and virtual lattices, and those
over (M) and (Lη) are taken over all possible combinations
of the basis function index for each lattice point on the base
and virtual lattices for η, respectively. On the right-hand
side of equation (7), the second term corresponds to the
contribution from the base lattice; the third, fifth and seventh
terms correspond to those from the virtual lattices; and the
fourth, sixth and eighth terms correspond to those from the
coupling between the base and virtual lattices.

ECIs for the VLCE can be obtained exactly by performing
the inner products in equations (8)–(11), which require the
values of f (�σ, �τ ) for all possible atomic arrangements on
all possible lattices. In practice, an alternative approach can
be introduced to estimate the ECIs through DFT calculations.
Similarly to the conventional CE technique, the ECIs in VLCE
can be estimated by taking a least-squares fitting, namely

∑

s

{ f (s)
DFT − f (s)

VLCE}2 = min. (12)

Here, f (s)
DFT and f (s)

VLCE, respectively, denote the values of
function f for the ordered structure s obtained via DFT
calculation and via VLCE. The summation s is taken over
a selected set of atomic arrangements on a number of
lattices. Optimized DFT input ordered structures and clusters
are typically determined by the genetic algorithm and the
construction of a ground-state diagram [12].

In order to see the relationship between ECIs for
conventional CE and for the proposed VLCE, we consider a
single well-defined lattice whose arrangement on the virtual
lattices is designated by �τγ . Since �τγ is no longer a variable
but a constant, we can obtain the following relationship by
comparing equations (4) and (7) with �τ = �τγ :

〈�(M)
α (�σ )| f (�σ)〉 = 〈�(M)

α (�σ )| f (�σ, �τγ )〉
+

∑

η

∑

β

∑

(Lη)

〈�(M,Lη)

α;β (�σ, �τ η
γ )| f (�σ, �τγ )〉�(Lη)

β ( �τ η
γ )

+
∑

η �=η′

∑

β,β ′

∑

(Lη,Lη′ )
〈�(M,Lη ,Lη′ )

α;β;β ′ (�σ, �τ η
γ ,

�
τ

η′
γ )| f (�σ, �τγ )〉

× �
(Lη,Lη′ )
β;β ′ ( �τ η

γ ,
�

τ
η′
γ )

+
∑

β,β ′,β ′′

∑

(Lx ,L y,Lz )

〈�(M,Lx ,L y,Lz )

α;β;β ′;β ′′ (�σ, �τ x
γ , �τ y

γ , �τ z
γ )| f (�σ, �τγ )〉

× �
(Lx ,L y ,Lz)

β;β ′;β ′′ ( �τ x
γ , �τ y

γ , �τ z
γ ). (13)

From equation (13), it is clear that the ECI for an α cluster
on a well-defined lattice in conventional CE is described by
the sum of the ECI corresponding to the α cluster on the base
lattice and the ECIs corresponding to the coupling between the
α cluster on the base lattice and all possible clusters on the
virtual lattices.

While the general expression for VLCE given by
equation (7) certainly describes the function on any given
lattice, for real systems one can sometimes consider a restricted
number of lattices. One of the most important examples
is that lattices are described by a combination of positions
of constituent lattices (hereinafter called partial lattices). In

such specific cases, one can significantly reduce the number
of terms in the expansion of equation (7) by introducing the
following concepts. For simplicity, here we consider C lattices
with N well-defined lattice points for R components, which
are defined by differences in the one-dimensional positions
of the constituent sublattices (i.e. one-dimensional stacking
sequences). This consideration can be extended to two-
and three-dimensional systems without loss of generality.
One can easily find such examples including layered boron–
carbon nitride, intercalation-dependent changes in the stacking
sequence in graphite, hexagonal BN, the close-packed plane
surface of fcc–hcp alloys (e.g. Al–Zn), composition-dependent
one-dimensional stacking faults in Cu–Al, Cu–Sn and Au–Cd
alloys, and chimney–ladder compounds of Ir-doped Mn–Si and
Mn-doped Ru–Si. When all C lattices can be decomposed
into the same combination of N ′ partial lattices, the N lattice
points on the C lattices are completely specified by lattice
points on the partial lattices and the positions of the partial
lattices themselves. Note that we can consider any case of
decomposition into partial lattices, i.e. (i) the number of lattice
points on all the partial lattices is the same and the partial
lattices are symmetry equivalent, (ii) the number of lattice
points is the same but the partial lattices are not symmetry
equivalent and (iii) the number of lattice points is not the same
for each partial lattice. Therefore, instead of specifying all
possible positions for the base lattice points, the spin variable
τp is now defined to specify the position of each partial lattice
p that takes R′ values. Then the arrangements of the partial
lattices can be expressed by a set of τ on a virtual lattice
with N ′ lattice points. When the virtual lattice is successfully
defined to describe all C lattices, any atomic arrangement
on the N well-defined lattice points comprising these lattices
is uniquely specified by the (N + N ′)-dimensional vector
{�σ, �τ } = {σ1, σ2, . . . , σN , τ1, τ2, . . . , τN ′ }. In a similar fashion
to the derivation of equation (7), we can immediately construct
complete orthonormal basis functions for the C lattices using
equations (2). Then any function of the atomic arrangement for
the C crystalline systems can be expressed as

f (�σ, �τ ) = 〈�0| f (�σ, �τ )〉�0

+
∑

α

∑

(M)

〈�(M)
α (�σ)| f (�σ, �τ )〉�(M)

α (�σ)

+
∑

β

∑

(L)

〈�(L)
β (�τ )| f (�σ, �τ )〉�(L)

β (�τ )

+
∑

α

∑

β

∑

(M)

∑

(L)

〈�(M,L)

α;β (�σ, �τ )| f (�σ, �τ )〉�(M,L)

α;β (�σ, �τ ),

(14)

where

〈g|h〉 = ξ
N ;N ′
0 Tr(N ;N ′)g · h ξ

N ;N ′
0 = R−N R′−N ′

Tr(N ;N ′) =
∑

σ1

· · ·
∑

σN

∑

τ1

· · ·
∑

τN ′
.

(15)

Thus, it is clear that the VLCE expression for lattices with
a one-dimensional stacking sequence can be significantly
simplified from the general expression of equations (7)–(14).

4
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2.3. Classification of clusters according to symmetry

In the practical use of CE, the number of clusters or
corresponding ECIs is typically reduced according to the
symmetry of the lattice. In conventional CE, since the ECI
〈�(M)

α (�σ )| f (�σ)〉 is independent of the atomic arrangement �σ ,
clusters α in the same set of basis indices (M) are classified
with respect to the underlying empty lattice: all clusters with
nonequivalent symmetry in class F are considered.

In VLCE, such a procedure to reduce the number of
clusters becomes somewhat complicated because a number of
lattices with different symmetries are simultaneously treated.
From equation (7), the ECIs in VLCE are independent not
only of atomic arrangement �σ but also of the positions of
lattice points or partial lattices, �τ . The former does not change
the symmetry of empty lattices, while the latter changes the
symmetry of lattices. We emphasize here that the expansion
of equation (7) is exact for any given set of lattices whose
numbers of symmetry-equivalent clusters (e.g. 1 − N N
pair cluster) differ from each other. This is simply because
information on all the symmetry operations for well-defined
empty lattices is not essentially required to construct cluster
functions in VLCE, which also holds true for conventional CE.
Therefore, VLCE can treat different lattices whose numbers
of equivalent symmetry clusters differ and its formalism in
principle does not depend on the difference in the number of
equivalent clusters. In order to reduce the number of clusters
considered, several practical approaches can be proposed to
classify the clusters. (i) All clusters are treated as being
different, which always results in the rigorous expansion of
equation (7). (ii) Clusters in intrapartial lattices and in virtual
lattices are classified with the symmetry of the associated
partial and virtual lattices. All clusters whose constituent
lattice points belong to different partial lattices are treated as
being different. (iii) Clusters in intra- and interpartial lattices
are classified with the symmetry of one specific arrangement
of the partial lattices. Note that several cluster classifications
other than the above three should exist. In any case, invalid
classification can sometimes severely violate the symmetry
of the clusters used, which results in the slower convergence
of ECIs or an incorrect estimation of the energy for specific
atomic arrangements. Therefore, a suitable classification
should be carefully considered, which depends on the given
system. However, one can, in principle, obtain the desired
accuracy in VLCE based on equation (7), since this expression
rigorously satisfies a complete orthonormal expansion of
function f . With these considerations, in section 3 we show an
example of VLCE with no classification of clusters according
to the symmetry.

3. Application of variable lattice cluster expansion

In this section, VLCE is applied to a specific system to
demonstrate how base and virtual lattices are introduced, and
how the function f (�σ, �τ ) is actually expressed for individual
systems. Also, we show how ECIs in VLCE are interpreted
in terms of the preferences of corresponding clusters. In the
following, we show the application of the simplified VLCE
expression given by equation (14) for lattices that are described

Figure 2. Upper figure: schematic illustration of one-dimensional
lattices with (a) line and (b) zigzag shapes. The dashed rectangles
represent the minimum unit of the lattice points used to distinguish
the lattices in (a) and (b). i and j represent the lattice points. Lower
figure: schematic illustration of the definition of the spin variable on
the virtual lattice point in order to distinguish lattices with line and
zigzag shapes. The left-hand side corresponds to the virtual lattice
and the right-hand side represents positions of the partial lattices
(here, lattice points i and j are denoted by solid circles).

by a difference in their stacking sequences. This is because:
(i) the general application of VLCE to any given lattice can
always be achieved by equation (7) and (ii) in a similar
fashion to the derivation of equation (14), one can modify the
expression of VLCE to reduce the number of expansion terms
of equation (7) by artificially defining partial lattices and a spin
variable τ that are suitable for describing the desired set of
lattices.

3.1. One dimension: line and zigzag lattices

The first example we consider is the case of one-dimensional
lattices with line and zigzag shapes, as respectively illustrated
in the upper part of figures 2(a) and (b), in an A–B binary
system. Although this is a simple example, its concept can be
easily extended to real systems where the stacking sequence
along one specific direction can vary with changes in the
composition or atomic arrangement.

The dashed rectangles represent the minimum unit of the
lattice points used to distinguish the lattices. Let us first derive
a conventional CE expression for lattices (a) and (b). When
we define the spin variables σθ = +1 (−1) for the occupation
of atom A (B) at lattice point θ (θ = i, j ) on the well-defined
lattice (a) or (b), the orthonormal basis functions at lattice point
θ can be obtained through equations (2):

ρ0(σθ ) = 1 ρ1(σθ ) = σθ . (16)

Since one of the two basis functions is unity, the indices of
the basis functions in equations (16) are not required to specify
cluster functions. Thus, the cluster function is described by the

5
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well-known expression

�α =
∏

θ∈α

σθ . (17)

Therefore, any function f on lattice (a) or (b) with
two neighboring lattice points can be simply expressed in
conventional CE as

f (�σ) = V r
0 + V r

1−iσi + V r
1− jσ j + V r

2−i jσiσ j , (18)

where V r
μ−{λ} denotes the ECI for a μ-body cluster consisting

of a set of lattice points {λ} on the well-defined lattice (a) or
(b). It is again clear that conventional CE cannot express the
function f on lattices (a) and (b) simultaneously, since the spin
variables σθ do not contain information to distinguish these
lattices. Alternatively, V r

μ−{λ} in equation (18) depends on the
lattices.

Next, we apply the VLCE technique to the one-
dimensional lattices in figure 2. In order to treat lattices (a)
and (b) by VLCE, we decompose the two lattices into two
partial lattices, where one contains lattice point i and the
other contains point j . Since the difference in lattices (a) and
(b) can be well described by the difference in the stacking
sequence, i.e. one atom on another atom with overhead
position (lattice (a)) or to the left or right of the atom below
position (lattice (b)) along the one-dimensional direction,
the virtual lattice should have characters that specify the
positions of partial lattices normal to the stacking direction:
two positions for each partial lattice is sufficient to describe
lattices (a) and (b). The lower side of figure 2 shows the
possible corresponding virtual lattice point. We define the spin
variable τ = +1 (−1) on the virtual lattice by placing a partial
lattice (here, lattice point i or j ) on the left-(right)-hand side
of the artificially introduced lattice, which is represented by
the dashed lines on the right-hand side of the lower figure of
figure 2. Then the well-defined lattices (a) and (b) in figure 2
can be expressed by coupling the base lattice and the virtual
lattice with an explicit occupation as schematically illustrated
in figure 3. Therefore, τp = τq (τp �= τq ) denotes lattice (a)
with the line shape (lattice (b) with the zigzag shape).

Now we can express any function f on lattices (a) and (b)
using spin variables σ and τ on the base and virtual lattices,
namely:

f (�σ, �τ ) = V0 + V b
1−iσi + V b

1− jσ j + V b
2−i jσiσ j

+ V v
1−pτp + V v

1−qτq + V v
2−pqτpτq

+ V b−v
1−i;1−pσiτp + V b−v

1−i;1−qσiτq + V b−v
1−i;2−pqσiτpτq

+ V b−v
1− j;1−pσ jτp + V b−v

1− j;1−qσ jτq + V b−v
1− j;2−pqσ jτpτq

+ V b−v
2−i j;1−pσiσ jτp + V b−v

2−i j;1−qσiσ jτq

+ V b−v
2−i j;2−pqσiσ jτpτq . (19)

Here, V b
μ−{λ} and V v

μ−{λ} denote the ECIs for a μ-body cluster
consisting of a set of lattice points {λ} on the base and virtual
lattices, respectively, and V b−v

μ−{λ};μ′−{λ′} denotes the ECI for
the coupling of the μ-body cluster with lattice points {λ} on
the base lattice and the μ′-body cluster with lattice points
{λ′} on the virtual lattice. In contrast to the conventional

Figure 3. Schematic illustration of coupling of base lattice and
virtual lattice with explicit occupation, resulting in two types of
well-defined lattice (a) and (b) shown in figure 2.

CE formalism in equation (18), the VLCE formalism in
equation (19) includes two types of spin variable, σ and τ , that
can specify the atomic arrangements on both lattice (a) and
lattice (b), and also the ECIs in equation (19) do not depend on
the lattice type.

From the above discussion, it is clear that the proposed
VLCE can simultaneously treat functions on different lattices
and how base and virtual lattices are introduced and their ECIs
are actually expressed. Next, we investigate how the ECIs in
VLCE are intuitively interpreted in terms of the preferences
of constituent atoms in a certain cluster. For the well-used
definition of the spin variable σ = ±1 on a well-defined lattice,
conventional CE gives a clear interpretation of the ECIs for a
pair cluster V r

2−i j . When we take function f in equation (18) as
the internal energy of a system for instance, V r

2−i j > 0 means
the energetic preference for an unlike-atom pair between lattice
points i and j , and V r

2−i j < 0 means that for a like-atom
pair. Therefore, the signs of the ECIs for a pair cluster are
a significant parameter related to the ordering tendency in a
system.

In order to give a clear interpretation of the ECIs in VLCE,
equation (13) is applied to a pair cluster on the base lattice.
Then we obtain the relationship between the ECI for a pair
cluster on the well-defined lattice and that for the base and
virtual lattices:

V r
2−i j = V b

2−i j + V b−v
2−i j;1−pτp + V b−v

2−i j;1−qτq + V b−v
2−i j;2−pqτpτq .

(20)
When we rewrite the ECIs for a pair cluster on well-defined
lattices (a) (τp = τq = +1 or τp = τq = −1) and (b) (τp =
+1, τq = −1 or τp = −1, τq = +1) as V r(a)

2−i j and V r(b)
2−i j ,

6
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respectively, these ECIs are explicitly expressed as

V r(a)
2−i j = V b

2−i j + V b−v
2−i j;1−p + V b−v

2−i j;1−q + V b−v
2−i j;2−pq

= V b
2−i j − V b−v

2−i j;1−p − V b−v
2−i j;1−q + V b−v

2−i j;2−pq

V r(b)
2−i j = V b

2−i j + V b−v
2−i j;1−p − V b−v

2−i j;1−q − V b−v
2−i j;2−pq

= V b
2−i j − V b−v

2−i j;1−p + V b−v
2−i j;1−q − V b−v

2−i j;2−pq,

(21)

which naturally leads to

V b−v
2−i j;1−p = V b−v

2−i j;1−q = 0. (22)

Therefore, the following relations can be derived from
equations (21) and (22):

V r(a)
2−i j = V b

2−i j + V b−v
2−i j;2−pq

V r(b)

2−i j = V b
2−i j − V b−v

2−i j;2−pq.
(23)

When we consider lattices (a) and (b) together, the most
energetically favorable pair cluster is specified not only by
the combination of the constituent elements but also by the
arrangement of the partial lattices. The preference can be
determined by the sign of the ECI for the pair cluster whose
ECI exhibits the largest absolute value. For instance, |V r(a)

2−i j | >

|V r(b)
2−i j | and V r(a)

2−i j < 0 correspond to the preference for a like-
atom pair on lattice (a). Thus, using equations (23) and by
comparing the absolute value of ECIs for pair clusters on a
well-defined lattice, we can construct a diagram of the most
favorable pair clusters in terms of V b

2−i j and V b−v
2−i j;2−pq as

shown in figure 4. Pair clusters consisting of an open circle and
a closed circle denote unlike-atom pairs, and those consisting
of two open or two closed circles denote like-atom pairs.
Vertical clusters represent lattice (a) in figure 2 and slanted
clusters represent lattice (b). The dotted axes represent the
ECIs for the corresponding pair clusters on lattices (a) and (b).
It can be clearly seen from figure 4 that four types of preferred
pair cluster are reasonably characterized by the combination of
signs of the ECI for the base lattice and that for the coupling
of the base and virtual lattices. The line shape of lattice (a) is
preferred when the signs of V b

2−i j and V b−v
2−i j;2−pq are the same,

and the zigzag shape of lattice (b) is preferred when V b
2−i j has a

different sign from V b−v
2−i j;2−pq. A positive sign for V b

2−i j results
in the preference for an unlike-atom pair and a negative sign
results in that for a like-atom pair.

Finally, we demonstrate practical applications of the
VLCE including accuracy of the predicted energies for a
number of lattices with a finite number of clusters used in
order to see the efficiency and convergence of the VLCE.
We employ all possible atomic arrangements on all possible
one-dimensional lattices consisting of four lattice points under
periodic boundary conditions constructed by base and virtual
lattices as shown in figure 2. This results in 16 atomic
arrangements on each of 16 lattices, i.e. 256 structures,
where the number of corresponding clusters in VLCE should
of course be 256 (i.e. 24 clusters on the base lattice times
24 clusters on the virtual lattice) that are complete and
orthonormal to describe the 256 structures. Among the 256
structures, 31 structures are symmetry-distinct. In order to

Figure 4. Diagram of the most favorable pair clusters in terms of
V b

2−i j and V b−v
2−i j;2−pq . Pair clusters consisting of an open circle and a

closed circle denote unlike-atom pairs, and those consisting of two
open circles or two closed circles denote like-atom pairs. Vertical
clusters represent lattice (a) in figure 2 and slanted clusters represent
lattice (b). The dotted axes represent the ECIs for the corresponding
pair clusters on lattices (a) and (b).

treat these 31 structures, we take a low symmetry lattice where
one of the four lattice points is located on the right (left)-
hand side and the remaining three are on the left (right)-hand
side, as the base lattice, and employ the virtual lattice in the
line shape. In this case, a total of 54 VLCE clusters appear.
Note that: (i) these 54 clusters are complete to describe the 31
structures. The reason why the number of clusters is larger than
that of the structures is simply that the number of symmetry-
nonequivalent clusters for a lower symmetry lattice should be
larger than that for higher symmetry lattices, which naturally
leads to splitting clusters for higher symmetry lattices. (ii) The
number of clusters used in the VLCE thus certainly depends
on the definition of base lattice. From (i) and (ii), it should be
practically important to determine which lattice is taken as the
base lattice: when we treat a set of higher symmetry lattices,
the base lattice with lower symmetry could result in a number
of unnecessary clusters. Meanwhile, when we treat a set of
lower symmetry lattices, the base lattice with higher symmetry
would cause a number of atomic arrangements on the lower
symmetry lattice that cannot be distinguished.

We give above 54 clusters assumed ECIs, and then
obtain energies for the 31 structures where variance of the
energy is 0.43 eV/atom, the difference between maximum and
minimum energy is 1.42 eV/atom and the minimum difference
in energy is 0.02 eV/atom. Among the 31 structures, we
make three sets of randomly selected 15 structures that are
used to obtain ECIs through least-squares fitting of the given
energies to the VLCE Hamiltonian. In order to estimate the
accuracy of the fitted ECIs, a cross-validation (CV) score [27]
is introduced. We search sets of a small number of clusters
up to 11 clusters from the 54 clusters, which give the smallest
CV score based on a genetic algorithm [28]. Figure 5 shows
the resultant CV score as a function of the number of clusters.
Closed circles, triangles and squares correspond to the three
sets of 15 input structures. From figure 5, it is clear that,
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Figure 5. Smallest CV score as a function of the number of clusters
used. Closed circles, triangles and squares correspond to three sets of
15 VLCE input structures.

for an appropriate selection of input structures (here, closed
squares), nine clusters can reasonably predict relative energies
with a low CV score below ∼0.01 eV/atom (i.e. half of the
minimum difference in energy of 0.02 eV/atom for the given
31 structures). This result certainly indicates the practical
efficiency of the proposed VLCE to predict energies for atomic
arrangements on a number of lattices.

3.2. Three dimensions: fcc and hcp lattices

According to section 3.1, no special technique is required
in VLCE to treat binary alloys on three-dimensional lattices
described by one-dimensional stacking sequences. Here we
consider fcc and hcp lattices that are well characterized by
the stacking sequence of the close-packed plane (i.e. fcc is
characterized by A–B–C–A–B–C–· · · and hcp is characterized
by A–B–A–B–A–B–· · · stacking). The fcc and hcp lattices are
first decomposed into partial lattices, each of which consists of
a close-packed plane of fcc or hcp lattices. Then we define
a spin variable on the virtual lattice to specify the position
(stacking sequence) of the partial lattices: the spin variable
with τ = +1, τ = 0 and τ = −1 represent stacking types A, B
and C, respectively. Then the well-defined fcc and hcp lattices
can be expressed by coupling the base and virtual lattices as
schematically illustrated in figure 6. Here, six partial lattices
are used to distinguish the fcc and hcp lattices, resulting in six
virtual lattice points of p–u. Therefore, we can express any
function f on the fcc and hcp lattices by coupling the clusters
with binary atomic arrangements on the base lattice and those
with ternary partial lattice arrangements on the virtual lattice,
namely

f (�σ, �τ ) = V0+
∑

α

{
Vα

∏

I∈α

σI

}
+

∑

β

∑

(L)

{
V (L)

β

∏

P∈β

d∈L

ρd(τP)

}

+
∑

α

∑

β

∑

(L)

{
V (L)

α;β
∏

I∈α

σI

∏

P∈β

d∈L

ρd(τP)

}
, (24)

where

ρ1(τP) =
√

3
2τP ρ2(τP ) = −√

2(1 − 3
2τ 2

P). (25)

Figure 6. Schematic illustration of coupling of base lattice and
virtual lattice, resulting in well-defined fcc and hcp lattices. Here,
horizontal bold lines denote the close-packed plane of fcc or hcp
lattices. Stacking types of fcc (ABCABC · · ·) and hcp
(ABABAB · · ·) are described by spin variables of −1, 0 and +1 on
virtual lattice, in a similar fashion to the definition of virtual lattice
for one-dimensional line and zigzag lattices in section 3.1.

In equation (24), the summations over α and β are taken
over all possible clusters consisting of base- and virtual
lattice points, respectively. The summation over (L) is taken
over all possible combinations of the basis function index
corresponding to the dimensions of the clusters: since the
virtual lattice has three values for the spin variable, two basis
functions, ρ1 and ρ2 in equations (25), are required. These
basis functions can be obtained via equations (2) [11]. Using
equation (24), we can express the function f not only on fcc
and hcp lattices but also on other lattices with different stacking
sequences of the close-packed plane.

To summarize, we derived a VLCE formalism that can be
applied to any atomic arrangement on any given lattice with
the same number of lattice points. In the practical application
of VLCE, one can reduce the number of clusters used and the
number of lattices to be treated by decomposing well-defined
given lattices into partial lattices and artificially introducing
corresponding virtual lattices so that coupling of the base and
virtual lattices can describe the desired lattices. Therefore, the
definition of the base and virtual lattices and the partial lattices
depend on the problem of interest and are not always unique.

4. Conclusions

We propose a cluster expansion technique, variable lattice
cluster expansion (VLCE), which can treat any given lattice
with the same number of lattice points in a single formalism.
Two types of spin variable, σ on the base lattice and τ on the
virtual lattice, are introduced to uniquely specify the atomic
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arrangements on the lattices. The former specifies atomic
arrangements on the base lattice and the latter specifies the
positions of each base lattice point. Then any function of an
atomic arrangement on the lattices can be rigorously expanded
in terms of the complete and orthonormal basis functions
constructed from the two types of spin variable. We also
introduce the concept of partial lattices to effectively reduce
the number of clusters used as well as the number of lattices
considered. The given lattices are determined by the positions
of the partial lattices, which are described by τ . To demonstrate
how the base and virtual lattices are introduced, and how the
ECIs in VLCE are interpreted, we first give a simple example
of one-dimensional lattices with line and zigzag shapes. The
signs of the ECIs on the base lattice and those for the coupling
between the base and virtual lattices successfully enable an
intuitive interpretation of which pair cluster is energetically
favored in terms not only of the combination of constituent
elements but also that of partial lattice arrangements. Using
a finite number of ECIs extracted from a finite number of input
structures, we demonstrate convergence of the VLCE, which
indicates the practical efficiency to describe relative energetic
for a number of atomic arrangements on given lattices. VLCE
is then applied to three-dimensional fcc and hcp lattices, where
they are described by a stacking sequence of a close-packed
plane. Since VLCE can predict the properties of any atomic
arrangement on a given lattice from those on different lattices,
it has a significant advantage in enhancing the number of states
that can effectively be explored through the CE technique in
configuration space.
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